A Study on Aeroengine Conceptual Design Considering Multi-Mission Performance Reliability

Author:

Cao DaluORCID,Bai Guangchen

Abstract

Owing to the realization of multi-mission adaptability requires more complex mechanical structure, the candidates of future aviation propulsion are confronted with more overall reliability problems than that of the conventional gas turbine engine. This situation is challenging to a traditional aeroengine deterministic design method. To overcome this challenge, the Reliability-based Multi-Design Point Methodology is proposed for aeroengine conceptual design. The presented methodology adopted an unconventional approach of engaging the reliability prediction by artificial neural network (ANN) surrogate models rather than the time-consuming Monte Carlo (MC) simulation. Based on the Adaptive Particle swarm optimization, the utilization of the pre-training technique optimizes the initial network parameters to acquire better-conditioned initial network, which is sited closer to designated optimum so that contributes to the convergence property. Moreover, a new hybrid algorithm is presented to integrate the pre-training technique into neural network training procedure in order to enhance the ANN performance. The proposed methodology is applied to the cycle design of a turbofan engine with uncertainty component performance. The testing results certify that the prediction accuracy of pre-trained ANN is improved with negligible computational cost, which only spent nearly one-millionth as much time as the MC-based probabilistic analysis (0.1267 s vs. 95,262 s, for 20 testing samples). The MC simulation results substantiate that optimal cycle parameters precisely improve the engine overall performance to simultaneously reach expected reliability (≥98.9%) in multiple operating conditions without unnecessary performance redundancy, which verifies the efficiency of the presented methodology. The presented efforts provide a novel approach for aeroengine cycle design, and enrich reliability design theory as well.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3