Mobile LiDAR for Scalable Monitoring of Mechanically Stabilized Earth Walls with Smooth Panels

Author:

Al-Rawabdeh AbdullaORCID,Aldosari MohammedORCID,Bullock DarcyORCID,Habib AymanORCID

Abstract

Mechanically stabilized earth (MSE) walls rely on its weight to resist the destabilizing earth forces acting at the back of the reinforced soil area. MSE walls are a common infrastructure along national and international transportation corridors as they are low-cost and have easy-to-install precast concrete panels. The usability of such transportation corridors depends on the safety and condition of the MSE wall system. Consequently, MSE walls have to be periodically monitored according to prevailing transportation asset management criteria during the construction and serviceability life stages to ensure that their predictable performance measures are met. To date, MSE walls are monitored using qualitative approaches such as visual inspection, which provide limited information. Aside from being time-consuming, visual inspection is susceptible to bias due to human subjectivity. Manual and visual inspection in the field has been traditionally based on the use of a total station, geotechnical field instrumentation, and/or static terrestrial laser scanning (TLS). These instruments can provide highly accurate and reliable performance measures; however, their underlying data acquisition and processing strategies are time-consuming and not scalable. The proposed strategy in this research provides several global and local serviceability measures through efficient processing of point cloud data acquired by a mobile LiDAR system (MLS) for MSE walls with smooth panels without the need for installing any targets. An ultra-high-accuracy vehicle-based LiDAR data acquisition system has been used for the data acquisition. To check the viability of the proposed methodology, a case study has been conducted to evaluate the similarity of the derived serviceability measures from TLS and MLS technologies. The results of that comparison verified that the MLS-based serviceability measures are within 1 cm and 0.3° of those obtained using TLS and thus confirmed the potential for using MLS to efficiently acquire point clouds while facilitating economical, scalable, and reliable monitoring of MSE walls.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3