Smart Route: Internet-of-Vehicles (IoV)-Based Congestion Detection and Avoidance (IoV-Based CDA) Using Rerouting Planning

Author:

Khan ZahidORCID,Koubaa AnisORCID,Farman Haleem

Abstract

Massive traffic jam is the top concern of multiple disciplines (Civil Engineering, Intelligent Transportation Systems (ITS), and Government Policy) presently. Although literature constitutes several IoT-based congestion detection schemes, the existing schemes are costly (money and time) and, as well as challenging to deploy due to its complex structure. In the same context, this paper proposes a smart route Internet-of-Vehicles (IoV)-based congestion detection and avoidance (IoV-based CDA) scheme for a particular area of interest (AOI), i.e., road intersection point. The proposed scheme has two broad parts: (1) IoV-based congestion detection (IoV-based CD); and (2) IoV-based congestion avoidance (IoV-based CA). In the given area of interest, the congestion detection phase sets a parametric approach to calculate the capacity of each entry point for real-time traffic congestion detection. On each road segment, the installed roadside unit (RSU) assesses the traffic status concerning two factors: (a) occupancy rate and (b) occupancy time. If the values of these factors (either a or b) exceed the threshold limits, then congestion will be detected in real time. Next, IoV-based congestion avoidance triggers rerouting using modified Evolving Graph (EG)-Dijkstra, if the number of arriving vehicles or the occupancy time of an individual vehicle exceeds the thresholds. Moreover, the rerouting scheme in IoV-based congestion avoidance also considers the capacity of the alternate routes to avoid the possibility of moving congestion from one place to another. From the experimental results, we determine that proposed IoV-based congestion detection and avoidance significantly improves (i.e., 80%) the performance metrics (i.e., path cost, travel time, travelling speed) in low segment size scenarios than the previous microscopic congestion detection protocol (MCDP). Although in the case of simulation time, the performance increase depends on traffic congestion status (low, medium, high, massive), the performance increase varies from 0 to 100%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3