Autonomous Dynamic Adaptability System to Maintain Irradiance Levels in a Steady-State Solar Simulator

Author:

Meyer Edson L.ORCID,Nwodo Julian C.ORCID

Abstract

This paper presents the design of an autonomous dynamic adaptability system (ADAS) for maintaining the irradiance levels of a steady-state xenon arc lamp solar simulator (SS). The solar simulator is used to carry out indoor testing and accelerated age tests on photovoltaic (PV) cells at the Fort Hare Institute of Technology (FHIT). The ADAS was designed primarily for two reasons: Firstly, to maintain a set irradiance level, irrespective of external effects which may cause unintended irradiance drift or fluctuations, while carrying out indoor tests. Secondly, to achieve the solar simulator set point quicker, thus reducing temperature build up on the target area. At a cold start, the SS runs at 20% of its rated current (145 A). At 20% of 145 A, the simulator gave an irradiance of 145.97 Wm−2 with a non-uniformity of 1.02%, and a cell surface temperature of 24.9 °C. At 50%, the simulator produced irradiance of 501.30 Wm−2, with a non-uniformity of 1.53% and a cell surface temperature of 25.0 °C. The irradiance of 1000 Wm−2, with a non-uniformity of 3.26% and a cell surface temperature of 25.9 °C, was achieved at 90% of the rated current. From the results obtained, the ADAS demonstrates that it can reliably operate the SS with very minimal human–machine interaction. Through the autonomous dynamic adaptability, set irradiance levels are maintained in a steady-state solar simulator once the user supplies operational set points via the supervisory control and data acquisition (SCADA) interface.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3