Solar Thermal Collector Output Temperature Prediction by Hybrid Intelligent Model for Smartgrid and Smartbuildings Applications and Optimization

Author:

Casteleiro-Roca José-LuisORCID,Chamoso PabloORCID,Jove EstebanORCID,González-Briones AlfonsoORCID,Quintián HéctorORCID,Fernández-Ibáñez María-IsabelORCID,Vega Vega Rafael AlejandroORCID,Piñón Pazos Andrés-JoséORCID,López Vázquez José AntonioORCID,Torres-Álvarez SantiagoORCID,Pinto TiagoORCID,Calvo-Rolle Jose LuisORCID

Abstract

Currently, there is great interest in reducing the consumption of fossil fuels (and other non-renewable energy sources) in order to preserve the environment; smart buildings are commonly proposed for this purpose as they are capable of producing their own energy and using it optimally. However, at times, solar energy is not able to supply the energy demand fully; it is mandatory to know the quantity of energy needed to optimize the system. This research focuses on the prediction of output temperature from a solar thermal collector. The aim is to measure solar thermal energy and optimize the energy system of a house (or building). The dataset used in this research has been taken from a real installation in a bio-climate house located on the Sotavento Experimental Wind Farm, in north-west Spain. A hybrid intelligent model has been developed by combining clustering and regression methods such as neural networks, polynomial regression, and support vector machines. The main findings show that, by dividing the dataset into small clusters on the basis of similarity in behavior, it is possible to create more accurate models. Moreover, combining different regression methods for each cluster provides better results than when a global model of the whole dataset is used. In temperature prediction, mean absolute error was lower than 4 ∘ C.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3