Providing Email Privacy by Preventing Webmail from Loading Malicious XSS Payloads

Author:

Fang Yong,Xu Yijia,Jia Peng,Huang ChengORCID

Abstract

With the development of internet technology, email has become the formal communication method in modern society. Email often contains a large amount of personal privacy information, possible business agreements, and sensitive attachments, which make emails a good target for hackers. One of the most common attack method used by hackers is email XSS (Cross-site scripting). Through exploiting XSS vulnerabilities, hackers can steal identities, logging into the victim’s mailbox and stealing content directly. Therefore, this paper proposes an email XSS detection model based on deep learning technology, which can identify whether the XSS payload is carried in the email or not. Firstly, the model could extract the Sender, Receiver, Subject, Content, Attachment field information from the original email. Secondly, the email XSS corpus is formed after data processing. The Word2Vec algorithm is introduced to train the corpus and extract features for each email sample. Finally, the model uses the Bidirectional-RNN algorithm and Attention mechanism to train the email XSS detection model. In the experiment, the AUC (area under curve) value of the Bidirectional-RNN model reached 0.9979. When the Attention mechanism was added, the accuracy upper limit of the Bidirectional-RNN model was raised to 0.9936, and the loss value was reduced to 0.03.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature Fusion-Based Detection of SQL Injection and XSS Attacks;2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS);2024-05-31

2. Application of intelligent algorithms in library resource malicious download detection system;Intelligent Decision Technologies;2024-05-30

3. Twenty-two years since revealing cross-site scripting attacks: A systematic mapping and a comprehensive survey;Computer Science Review;2024-05

4. Methods for Detecting XSS Attacks Based on BERT and BiLSTM;2024 8th International Conference on Management Engineering, Software Engineering and Service Sciences (ICMSS);2024-01-12

5. Machine and Deep Learning-based XSS Detection Approaches: A Systematic Literature Review;Journal of King Saud University - Computer and Information Sciences;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3