Chemical and Mechanical Roughening Treatments of a Supra-Nano Composite Resin Surface: SEM and Topographic Analysis

Author:

Puleio FrancescoORCID,Rizzo GiuseppinaORCID,Nicita Fabiana,Lo Giudice Fabrizio,Tamà Cristina,Marenzi Gaetano,Centofanti Antonio,Raffaele Marcello,Santonocito DarioORCID,Risitano GiacomoORCID

Abstract

Background: Repairing a restoration is a more advantageous and less invasive alternative to its total makeover. The aim of this study was to analyze the effects of chemical and mechanical surface treatments aimed at increasing the roughness of a supra-nano composite resin. Methods: 27 cylindrical blocks of microhybrid composite were made. The samples were randomly divided into nine groups (n = 3). The samples’ surface was treated differently per each group: acid etching (35% H3PO4, 30 s and 60 s), diamond bur milling, sandblasting and the combination of mechanical treatment and acid etching. The samples’ surface was observed by a scanning electron microscope (SEM) and a confocal microscope for observational study, and surface roughness (Ra) was recorded for quantitative analysis. Results: The images of the samples sandblasted with Al2O3 showed the greatest irregularity and the highest number of microcavities. The surfaces roughened by diamond bur showed evident parallel streaks and sporadic superficial microcavities. No significant roughness differences were recorded between other groups. The difference in roughness between the control group, diamond bur milled group and sandblasted group was statistically significant. (p < 0.01). Comparison between the diamond bur milled group and the sandblasted group was also significant (p < 0.01). Conclusion: According to our results, sandblasting is the best treatment to increase the surface roughness of a supra-nano composite.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3