A Smartphone-Based Cell Segmentation to Support Nasal Cytology

Author:

Dimauro GiovanniORCID,Di Pierro Davide,Deperte Francesca,Simone LorenzoORCID,Fina Pio Raffaele

Abstract

Rhinology studies the anatomy, physiology, and diseases affecting the nasal region—one of the most modern techniques to diagnose these diseases is nasal cytology, which involves microscopic analysis of the cells contained in the nasal mucosa. The standard clinical protocol regulates the compilation of the rhino-cytogram by observing, for each slide, at least 50 fields under an optical microscope to evaluate the cell population and search for cells important for diagnosis. The time and effort required for the specialist to analyze a slide are significant. In this paper, we present a smartphones-based system to support cell segmentation on images acquired directly from the microscope. Then, the specialist can analyze the cells and the other elements extracted directly or, alternatively, he can send them to Rhino-cyt, a server system recently presented in the literature, that also performs the automatic cell classification, giving back the final rhinocytogram. This way he significantly reduces the time for diagnosing. The system crops cells with sensitivity = 0.96, which is satisfactory because it shows that cells are not overlooked as false negatives are few, and therefore largely sufficient to support the specialist effectively. The use of traditional image processing techniques to preprocess the images also makes the process sustainable from the computational point of view for medium–low end architectures and is battery-efficient on a mobile phone.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3