Exploiting a Deep Neural Network for Efficient Transmit Power Minimization in a Wireless Powered Communication Network

Author:

Hameed Iqra,Tuan Pham-VietORCID,Koo InsooORCID

Abstract

In this paper, we propose a learning-based solution for resource allocation in a wireless powered communication network (WPCN). We provide a study and analysis of a deep neural network (DNN) which can reasonably effectively approximate the iterative optimization algorithm for resource allocation in the WPCN. In this scheme, the deep neural network provides an optimized solution for transmitting power with different channel coefficients. The proposed deep neural network accepts the channel coefficient as an input and outputs minimized power for this channel in the WPCN. The DNN learns the relationship between input and output and gives a fairly accurate approximation for the transmit power optimization iterative algorithm. We exploit the sequential parametric convex approximation (SPCA) iterative algorithm to solve the optimization problem for transmit power in the WPCN. The proposed approach ensures the quality of service (QoS) of the WPCN by managing user throughput and by keeping harvested energy levels above a defined threshold. Through numerical results and simulations, it is verified that the proposed scheme can best approximate the SPCA iterative algorithms with low computational time consumption.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3