Abstract
For the past few years, the transfer printing method has been developed and has secured numerous advantages. Here, via both experiments and analyses, we have focused on identifying key parameters and optimizing their values in the fabrication process of stamps for transfer-printing micro-devices. Specifically, the elastic modulus of posts is measured using the atomic force microscope and the Derjaguin, Muller, and Toporov model. Based on mold morphologies data, we subsequently explore the law of photoresist development under different design widths as well as development time, establish mathematical models, and offer relevant explanations for the formation of various developmental topographies. Furthermore, the relationship between the elastic modulus and these stamp-fabrication parameters has also been analyzed and confirmed. Hopefully, the proposed work can provide the guidance for fabricating reliable stamps in the future.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Fundamental Research Funds for the Central Universities
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献