Convective Heat and Mass Transfer in Third-Grade Fluid with Darcy–Forchheimer Relation in the Presence of Thermal-Diffusion and Diffusion-Thermo Effects over an Exponentially Inclined Stretching Sheet Surrounded by a Porous Medium: A CFD Study

Author:

Abbas Amir,Shafqat RamshaORCID,Jeelani Mdi BegumORCID,Alharthi Nadiyah HussainORCID

Abstract

The current study aims to investigate the thermal-diffusion and diffusion-thermo effects on heat and mass transfer in third-grade fluid with Darcy–Forchheimer relation impact over an exponentially inclined stretching sheet embedded in a porous medium. The proposed mechanism in terms non-linear and coupled partial differential equations is reduced to set of ordinary differential equations by employing an appropriate similarity variable formulation. The reduced form of equations is solved by using the MATLAB built-in numerical solver bvp4c. The numerical results for unknown physical properties such as velocity profile, temperature field, and mass concentration along with their gradients such as the skin friction, the rate of heat transfer, and the rate of mass transfer at angle of inclination α=π/6 are obtained under the impact of material parameters that appear in the flow model. The solutions are displayed in forms of graphs as well as tables and are discussed with physical reasoning. From the demonstration of the graphical results, it is inferred that thermal-diffusion parameter Sr velocity, temperature, and concentration profiles are augmented. For the increasing magnitude of the diffusion-thermo parameter Df the fluid velocity and fluid temperature rise but the opposite trend in mass concentration is noted. The current results are compared with the available results in the existing literature, and there is good agreement between them that shows the validation of the present study.

Funder

Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3