Abstract
The paper presents a useful engineering model for the design of preliminary hybrid rocket engines. This model involves the experimentally obtained equation regarding the speed of the burning interface between solid fuel and gaseous phase, called the regression rate. This regression rate characterizes the mass rate of the burning fuel and additionally the mass rate of the oxidizer through the imposed ratio of these mass rates during combustion. The preliminary design is applied to combustion using pure HTPB and gaseous oxygen and was developed for three cases, constant regression rate, constant oxygen mass flow rate and constant O/F (ratio of mass rates of oxygen and of fuel). The design evaluates the initial fuel port geometry, the initial mass of fuel and oxygen, the combustion time, the thrust at sea level, and the time-dependent functions of regression rate, of fuel and oxygen mass rates, and of thrust. It was assumed that the regression rate formula applies at any time of combustion. These evaluations can also be applied for other fuel/oxygen couples by knowing the correct formula for the regression rate.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献