Drying Biomass with a High Water Content—The Influence of the Final Degree of Drying on the Sizing of Indirect Dryers

Author:

Havlík JanORCID,Dlouhý Tomáš,Pitel’ JánORCID

Abstract

This article deals with the influence of the final drying degree of moist biomass used as fuel in a power or CHP plant on indirect dryer sizing. For a description of the drying process, experiments with wet bark containing approx. 50 wt% of water were carried out in a laboratory indirect dryer. A new parameter called drying effectivity was introduced, whose size varies according to the degree of biomass being dried. Its maximum value corresponds to the optimal biomass drying, when the relative size of the indirect dryer to evaporate the required mass of water from the biomass would be smallest. Based on the experimentally determined drying characteristics of wet bark, the optimal drying of 13 wt% of water content was evaluated. If the bark was dried to a lower water content, the required relative size and price of the dryer would increase. Similarly, drying a bark with water content above 31 wt% is not very advantageous because drying effectivity continues to increase rapidly at this stage, and the required relative size of the dryer therefore decreases.

Funder

Ministry of Education Youth and Sports

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference33 articles.

1. Renewable Energy Statisticshttps://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics

2. Bioenergy Europehttps://bioenergyeurope.org/article/301-bioenergy-europe-s-new-brochure-we-are-renewable-energy-champions.html

3. Biomass Drying and Dewatering for Clean Heat & Power;Ross,2008

4. Storage and drying of wood fuel

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3