Weighted Similarity and Core-User-Core-Item Based Recommendations

Author:

Zhang ZhuangzhuangORCID,Dong YunquanORCID

Abstract

In traditional recommendation algorithms, the users and/or the items with the same rating scores are equally treated. In real world, however, a user may prefer some items to other items and some users are more loyal to a certain item than other users. In this paper, therefore, we propose a weighted similarity measure by exploiting the difference in user-item relationships. In particular, we refer to the most important item of a user as his core item and the most important user of an item as its core user. We also propose a Core-User-Item Solver (CUIS) to calculate the core users and core items of the system, as well as the weighting coefficients for each user and each item. We prove that the CUIS algorithm converges to the optimal solution efficiently. Based on the weighted similarity measure and the obtained results by CUIS, we also propose three effective recommenders. Through experiments based on real-world data sets, we show that the proposed recommenders outperform corresponding traditional-similarity based recommenders, verify that the proposed weighted similarity can improve the accuracy of the similarity, and then improve the recommendation performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3