Dynamic Physiological Responses of Cinnamomum camphora with Monoterpene Protection under High Temperature Shock

Author:

Wang Yingying12,Qian Qixia3,Xu Haozhe12,Zuo Zhaojiang12

Affiliation:

1. Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China

2. State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China

3. College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China

Abstract

Monoterpenes can protect plants against high temperature, but the early events of protection are still unknown. In this study, the dynamic variations in reactive oxygen species metabolism, photosynthetic capacity, and related gene expression in linalool, eucalyptol, and camphor chemotypes of Cinnamomum camphora with and without monoterpene emission under 6 h high-temperature stress were investigated. With respect to the control (28 °C), 40 °C and Fos + 40 °C (fosmidomycin inhibited monoterpene biosynthesis under 40 °C) treatments increased H2O2 and thiobarbituric acid reactive substance levels in the three chemotypes, but without significant differences between the two treatments after 2 h. Compared with the 40 °C treatment, the Fos + 40 °C treatment further aggravated the increase after 4 h, with increases of 13.8%, 12.3%, and 12.3% in H2O2 levels as well as 16.5%, 17.4%, and 9.1% in thiobarbituric acid reactive substance levels, respectively, in linalool, eucalyptol, and camphor chemotypes. When the three chemotypes were treated with 40 °C and Fos + 40 °C, the ascorbic acid content was gradually decreased during the 2 h treatment. After 4 h, the Fos + 40 °C treatment further aggravated the decrease in ascorbic acid content, with decreases of 10.6%, 9.8%, and 20.1%, respectively, in the eucalyptol, linalool, and camphor chemotypes. This could be caused by the further down-regulation of the key gene GGP in antioxidant biosynthesis. Meanwhile, two genes (VTE3 and 4CL) in other non-enzymatic antioxidant formation were also further down-regulated in Fos + 40 °C treatment for 4 h. These might lead to the further increase in reactive oxygen species levels in Fos + 40 °C treatment lacking non-enzymatic antioxidants. The photosynthetic electron yield and transfer (φPo, Ψo and φEo) in the three chemotypes were significantly (p < 0.05) decreased under the 40 °C and Fos + 40 °C treatments for 0.5 h, and the photosynthetic rate was significantly (p < 0.05) decreased in the two treatments for 1 h. After 4 h, the Fos + 40 °C treatment aggravated the decrease, as the genes encoding the components of photosystem II (psbP and psbW) and ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS and rbcL) were further down-regulated. These dynamic variations in the early events suggested that monoterpenes should act as signaling molecules to improve plant thermotolerance, as blocking monoterpene biosynthesis did not cause immediate effects on the physiological responses in contrast to the monoterpene-emitting plants during the 2 h high temperature stress, but resulted in serious damages after 4 h for suppressing related gene expression. This not only provides new proof for the isoprenoid thermotolerance mechanism by serving a signaling function, but also promotes the utilization of monoterpenes as anti-high-temperature agents, and the cultivation of high-temperature tolerance varieties with abundant monoterpene emission.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3