Fire Damage to the Soil Bacterial Structure and Function Depends on Burn Severity: Experimental Burnings at a Lysimetric Facility (MedForECOtron)

Author:

Moya DanielORCID,Fonturbel Teresa,Peña Esther,Alfaro-Sanchez Raquel,Plaza-Álvarez Pedro AntonioORCID,González-Romero Javier,Lucas-Borja Manuel EstebanORCID,de Las Heras JorgeORCID

Abstract

The soil microbiota is vulnerable to burning; however, it shows some resilience. No indices have yet been developed to assess fire damage related to soil biota. We evaluated the biological soil indices recorded by a Biolog EcoPlate System in a Mediterranean ecosystem. The experiment was carried out in an outdoor forest lysimeter facility (MedForECOtron), where we simulated burns with different burn severities. Burning increased the metabolic diversity of bacteria and most C-substrate utilization groups. Soil organic matter, phosphorus, electric conductivity, and calcium increased with increasing burn severity. Microbial richness and activity, as well as the integrated capacity of soil microbes to use a C source, lowered by burning, but recovered 6 months later. The functional diversity and amount of the C source used by microbes immediately increased after fire, and values remained higher than for unburned soils. We evaluated the changes in the vulnerability and resilience of fire-adapted ecosystems to improve their adaptive forest management. We found that the high burn severity reduced microbial richness, functional diversity, and the C source utilization of soil microbes (marked vulnerability to high temperatures), which recovered in the short term (high resilience). These results help to understand the main mechanisms of the effects of wildfire on semi-arid Mediterranean ecosystems, whose field validation will be helpful for fire prevention planning and restoration of burned areas.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3