Effects of Slope Gradient on Runoff and Sediment Yield on Machine-Induced Compacted Soil in Temperate Forests

Author:

Jourgholami MeghdadORCID,Karami Sara,Tavankar FarzamORCID,Lo Monaco AngelaORCID,Picchio Rodolfo

Abstract

There has been a severely negative impact on soil water resources in temperate forests caused by the introduction of the type of heavy machinery in the forestry sector used for forest harvesting operations. These soil disturbances increase the raindrop impact on bare mineral soil, decrease infiltration rate, detach soil particles, and enhance surface flow. According to several studies, the role of slope gradient influence on runoff and soil loss continues to be an issue, and therefore more study is needed in both laboratory simulations and field experiments. It is important to define and understand what the impacts of slope gradient in harvesting practices are, so as to develop guidelines for forest managers. More knowledge on the key factors that cause surface runoff and soil loss is important in order to limit any negative results from timber harvesting operations performed on hilly terrains in mountainous forests. A field setting using a runoff plot 2 m2 in size was installed to individualize the effects of different levels of slope gradient (i.e., 5, 10, 15, 20, 25, 30, 35, and 40%) on the surface runoff, runoff coefficient, and sediment yield on the skid trails under natural rainfall conditions. Runoff and sediment yield were measured with 46 rainfall events which occurred during the first year after machine traffic from 17 July 2015 to 11 July 2016 under natural conditions. According to Pearson correlation, runoff (r = 0.51), runoff coefficient (r = 0.55), and sediment yield (r = 0.51) were significantly correlated with slope gradient. Results show that runoff increased from 2.45 to 6.43 mm as slope gradient increased from 5 to 25%, reaching to the critical point of 25% for slope. Also, further increasing the slope gradient from 25 to 40% led to a gradual decrease of the runoff from 6.43 to 4.62 mm. Runoff coefficient was significantly higher under the plot with a slope gradient of 25% by 0.265, whereas runoff coefficient was lowest under the plot with a slope gradient of 5%. Results show that sediment yield increased by increasing the slope gradient of plot ranging 5% to 30%, reaching to the critical point of 30%, and then decreased as the slope gradient increased from 35% to 40%. Runoff plot with a slope gradient of 30% (4.08 g m−2) ≈ plot length of 25% (3.91 g m−2) had a significantly higher sediment yield, whereas sediment yield was lowest under the plot with a slope gradient of 5% and 10%. A regression analysis of rainfall and runoff showed that runoff responses to rainfall for plots with different slope gradients were linearly and significantly increased. According to the current results, log skidding operations should be planned in the skid trails with a slope gradient lower than the 25 to 30% to suppress the negative effect of skidding operations on runoff and sediment yield.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3