Genomic, Epigenomic, Transcriptomic, Proteomic and Metabolomic Approaches in Atopic Dermatitis

Author:

Bratu Dalia12,Boda Daniel234,Caruntu Constantin45ORCID

Affiliation:

1. Department of Dermatology, ‘Colentina’ Clinical Hospital, 020125 Bucharest, Romania

2. Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania

3. Department of Dermatology, ‘Ponderas’ Academic Hospital, 014142 Bucharest, Romania

4. Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania

5. Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease with a high prevalence in the developed countries. It is associated with atopic and non-atopic diseases, and its close correlation with atopic comorbidities has been genetically demonstrated. One of the main roles of genetic studies is to comprehend the defects of the cutaneous barrier due to filaggrin deficit and epidermal spongiosis. Recently, epigenetic studies started to analyze the influence of the environmental factors on gene expression. The epigenome is considered to be a superior second code that controls the genome, which includes alterations of the chromatin. The epigenetic changes do not alter the genetic code, however, changes in the chromatin structure could activate or inhibit the transcription process of certain genes and consequently, the translation process of the new mRNA into a polypeptide chain. In-depth analysis of the transcriptomic, metabolomic and proteomic studies allow to unravel detailed mechanisms that cause AD. The extracellular space and lipid metabolism are associated with AD that is independent of the filaggrin expression. On the other hand, around 45 proteins are considered as the principal components in the atopic skin. Moreover, genetic studies based on the disrupted cutaneous barrier can lead to the development of new treatments targeting the cutaneous barrier or cutaneous inflammation. Unfortunately, at present, there are no target therapies that focus on the epigenetic process of AD. However, in the future, miR-143 could be an important objective for new therapies, as it targets the miR-335:SOX axis, thereby restoring the miR-335 expression, and repairing the cutaneous barrier defects.

Funder

Ministry of Research, Innovation and Digitization, CCCDI—UEFISCDI

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3