Isoniazid Concentration and NAT2 Genotype Predict Risk of Systemic Drug Reactions during 3HP for LTBI

Author:

Lee Meng-RuiORCID,Huang Hung-Ling,Lin Shu-Wen,Cheng Meng-Hsuan,Lin Ya-Ting,Chang So-Yi,Yan Bo-ShiunORCID,Kuo Ching-Hua,Lu Po-Liang,Wang Jann-YuanORCID,Chong Inn-Wen

Abstract

Weekly rifapentine and isoniazid therapy (known as 3HP) for latent tuberculosis infection (LTBI) is increasingly used, but systemic drug reactions (SDR) remain a major concern. Methods: We prospectively recruited two LTBI cohorts who received the 3HP regimen. In the single-nucleotide polymorphism (SNP) cohort, we collected clinical information of SDRs and examined the NAT2, CYP2E1, and AADAC SNPs. In the pharmacokinetic (PK) cohort, we measured plasma drug and metabolite levels at 6 and 24 h after 3HP administration. The generalised estimating equation model was used to identify the factors associated with SDRs. Candidate SNPs predicting SDRs were validated in the PK cohort. A total of 177 participants were recruited into the SNP cohort and 129 into the PK cohort, with 14 (8%) and 13 (10%) in these two cohorts developing SDRs, respectively. In the SNP cohort, NAT2 rs1041983 (TT vs. CC+CT, odds ratio [OR] [95% CI]: 7.00 [2.03–24.1]) and CYP2E1 rs2070673 (AA vs. TT+TA, OR [95% CI]: 3.50 [1.02–12.0]) were associated with SDR development. In the PK cohort, isoniazid level 24 h after 3HP administration (OR [95% CI]: 1.61 [1.15–2.25]) was associated with SDRs. Additionally, the association between the NAT2 SNP and SDRs was validated in the PK cohort (rs1041983 TT vs. CC+CT, OR [95% CI]: 4.43 [1.30–15.1]). Conclusions: Isoniazid played a role in the development of 3HP-related SDRs. This could provide insight for further design of a more optimal regimen for latent TB infection.

Funder

Ministry of Health and Welfare

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3