LAEND: A Model for Multi-Objective Investment Optimisation of Residential Quarters Considering Costs and Environmental Impacts

Author:

Tietze IngelaORCID,Lazar Lukas,Hottenroth Heidi,Lewerenz Steffen

Abstract

Renewable energy systems are especially challenging both in terms of planning and operation. Energy system models that take into account not only the costs but also a wide range of environmental impacts support holistic planning. In this way, burden-shifting caused by greenhouse gas mitigation can be identified and minimised at an early stage. The Life cycle Assessment based ENergy Decision support tool LAEND combines a multi-criteria optimising tool for energy system modelling and an integrated environmental assessment for the analysis of decentral systems. By a single or multi-objective optimisation, considering costs, environmental impact indicators as well as weighted impact indicator sets, the model enables the determination of optimal investment planning and dispatch of the analysed energy system. The application of LAEND to an exemplary residential quarter shows the benefit of the model regarding the identification of conflicting goals and of a system that compensates for the different objectives. The observed shift of environmental impacts from the use phase to the production phase of the renewable electricity generators points further to the importance of the integration of the entire life cycle.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference58 articles.

1. Energy consumption and economic growth in Vietnam

2. Energy Consumption and Economic Growth. New Insights into the Cointegration Relationship;Belke,2010

3. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China

4. Climate Change 2014: Mitigation of Climate Change,2014

5. German nuclear phase-out enters the next stage: Electricity supply remains secure—Major challenges and high costs for dismantling and final waste disposal;Von Hirschhausen;DIW Econ. Bull.,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3