Scheduling Optimization of Time-Triggered Cyber-Physical Systems Based on Fuzzy-Controlled QPSO and SMT Solver
Author:
Jian JieORCID,
Wang Lide,
Chen Huang,
Nie Xiaobo
Abstract
The time-triggered communication paradigm is a cost-efficient way to meet the real-time requirements of cyber-physical systems. It is a non-deterministic polynomial NP-complete problem for multi-hop networks and non-strictly periodic traffic. A two-level scheduling approach is proposed to simplify the complexity during optimization. In the first level, a fuzzy-controlled quantum-behaved particle swarm optimization (FQPSO) algorithm is proposed to optimize the scheduling performance by assigning time-triggered frame instances to the basic periods of each link. In order to prevent population from high aggregation, a random mutation mechanism is used to disturb particles at the aggregation point and enhance the diversity at later stages. Fuzzy logic is introduced and well designed to realize a dynamic adaptive adjustment of the contraction–expansion coefficient and mutation rate in FQPSO. In the second level, we use an improved Satisfiability Modulo Theories (SMT) scheduling algorithm to solve the collision-free and temporal constraints. A schedulability ranking method is proposed to accelerate the computation of the SMT-based incremental scheduler. Our approach can co-optimize the jitter and load balance of communication for an off-line schedule. The experiments show that the proposed approach can improve the performance of the scheduling table, reduce the optimization time, and reserve space for incremental messages.
Funder
Fundamental Research Funds for the Central Universities of China
Natural Science Foundation of Beijing Municipality
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference46 articles.
1. Application of Linear Matrix Inequalities for Load Frequency Control With Communication Delays
2. Industrial Communication Networks—Profiles—Part 1: Fieldbus Profiles. International Electrotechnical Commission 61784-1,2014
3. Industrial Communication Networks—Fieldbus Specifications—Part 2: Physical Layer specification and Service Definition, International Electrotechnical Commission 61158-2,2014
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献