Ensemble of Regression-Type and Interpolation-Type Metamodels

Author:

Yan Cheng,Zhu Jianfeng,Shen Xiuli,Fan Jun,Mi Dong,Qian Zhengming

Abstract

Metamodels have become increasingly popular in the field of energy sources because of their significant advantages in reducing the computational cost of time-consuming tasks. Lacking the prior knowledge of actual physical systems, it may be difficult to find an appropriate metamodel in advance for a new task. A favorite way of overcoming this difficulty is to construct an ensemble metamodel by assembling two or more individual metamodels. Motivated by the existing works, a novel metamodeling approach for building the ensemble metamodels is proposed in this paper. By thoroughly exploring the characteristics of regression-type and interpolation-type metamodels, some useful information is extracted from the feedback of the regression-type metamodels to further improve the functional fitting capability of the ensemble metamodels. Four types of ensemble metamodels were constructed by choosing four individual metamodels. Common benchmark problems are chosen to compare the performance of the individual and ensemble metamodels. The results show that the proposed metamodeling approach reduces the risk of selecting the worst individual metamodel and improves the accuracy of the used individual metamodels.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3