Enhancing the Photovoltaic Performance of Cd(1−x)ZnxS Thin Films Using Seed Assistance and EDTA Treatment

Author:

Kumarage Gayan W. C.1ORCID,Wijesundera Ruwan P.1,Comini Elisabetta2ORCID,Dassanayake Buddhika S.3ORCID

Affiliation:

1. Department of Physics and Electronics, Faculty of Science, University of Kelaniya, Kelaniya 11600, Sri Lanka

2. Sensor Laboratory, Department of Information Engineering, University of Brescia, 25123 Brescia, Italy

3. Department of Physics, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka

Abstract

This research article provides a comprehensive investigation into the optoelectronic characteristics of three distinct types of cadmium sulfide (CdS) thin films, namely: (a) conventionally prepared CdS thin films using chemical bath deposition (CBD-CdS), (b) CdS thin films produced via chemical bath deposition with the inclusion of zinc (CBD-Cd(1−x)ZnxS, x = 0.3), and (c) CdS thin films synthesized using a seed-assisted approach, treated with ethylenediaminetetraacetic acid (EDTA), and incorporating zinc (ED/CBD + EDTA-Cd(1−x)ZnxS). The investigation reveals that the crystallite size of these thin films decreases upon the addition of EDTA to the reaction solution, leading to an increase in the inter-planar spacing and dislocation density. Furthermore, a blue shift in the transmittance edge of the ED/CBD + EDTA-Cd(1−x)ZnxS samples compared to CBD-CdS implies modifications in the band gaps of the deposited films. The incorporation of Zn2+ into the reaction solution results in an increased band gap value of up to 2.42 eV. This suggests that Cd(1−x)ZnxS thin films permit more efficient photon transmission compared to conventional CdS. Among the three types of films studied, ED/CBD + EDTA-Cd(1−x)ZnxS exhibits the highest optical band gap of 2.50 eV. This increase in the optical band gap is attributed to the smaller crystallite size and the splitting of the tail levels from the band structure. Additionally, the increment in the optical band gap leads to reduced light absorption at longer wavelengths, thereby enhancing the electrical properties. Notably, ED/CBD + EDTA-Cd(1−x)ZnxS thin films demonstrate improved photovoltaic performance in a photoelectrochemical (PEC) cell, characterized by enhanced open-circuit voltage (363 mV, VOC), short-circuit current (35.35 μA, ISC), and flat-band voltage (−692 mV, Vfb). These improvements are attributed to the better adhesion of CdS to the fluorine-doped tin oxide (FTO) substrate and improved inter-particle connectivity.

Funder

Edu-Training National Solar Project of the State Ministry of Skills Development, Vocational Education, Research & Innovation, Sri Lanka

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3