Analysis of the Contribution of Intrinsic Disorder in Shaping Potyvirus Genetic Diversity

Author:

Lafforgue GuillaumeORCID,Michon ThierryORCID,Charon JustineORCID

Abstract

Intrinsically disordered regions (IDRs) are abundant in the proteome of RNA viruses. The multifunctional properties of these regions are widely documented and their structural flexibility is associated with the low constraint in their amino acid positions. Therefore, from an evolutionary stand point, these regions could have a greater propensity to accumulate non-synonymous mutations (NS) than highly structured regions (ORs, or ‘ordered regions’). To address this hypothesis, we compared the distribution of non-synonymous mutations (NS), which we relate here to mutational robustness, in IDRs and ORs in the genome of potyviruses, a major genus of plant viruses. For this purpose, a simulation model was built and used to distinguish a possible selection phenomenon in the biological datasets from randomly generated mutations. We analyzed several short-term experimental evolution datasets. An analysis was also performed on the natural diversity of three different species of potyviruses reflecting their long-term evolution. We observed that the mutational robustness of IDRs is significantly higher than that of ORs. Moreover, the substitutions in the ORs are very constrained by the conservation of the physico-chemical properties of the amino acids. This feature is not found in the IDRs where the substitutions tend to be more random. This reflects the weak structural constraints in these regions, wherein an amino acid polymorphism is naturally conserved. In the course of evolution, potyvirus IDRs and ORs follow different evolutive paths with respect to their mutational robustness. These results have forced the authors to consider the hypothesis that IDRs and their associated amino acid polymorphism could constitute a potential adaptive reservoir.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3