Abstract
In this paper, we present a theoretical study on the maximum specific loss power in the admissible biological limit (PsM)l for CoFe2O4 ferrimagnetic nanoparticles, as a possible candidate in alternative and non-invasive cancer therapy by superparamagnetic hyperthermia. The heating time of the nanoparticles (Δto) at the optimum temperature of approx. 43 °C for the efficient destruction of tumor cells in a short period of time, was also studied. We found the maximum specific loss power PsM (as a result of superparamegnetic relaxation in CoFe2O4 nanoparticles) for very small diameters of the nanoparticles (Do), situated in the range of 5.88–6.67 nm, and with the limit frequencies (fl) in the very wide range of values of 83–1000 kHz, respectively. Additionally, the optimal heating temperature (To) of 43 °C was obtained for a very wide range of values of the magnetic field H, of 5–60 kA/m, and the corresponding optimal heating times (Δto) were found in very short time intervals in the range of ~0.3–44 s, depending on the volume packing fraction (ε) of the nanoparticles. The obtained results, as well as the very wide range of values for the amplitude H and the frequency f of the external alternating magnetic field for which superparamagnetic hyperthermia can be obtained, which are great practical benefits in the case of hyperthermia, demonstrate that CoFe2O4 nanoparticles can be successfully used in the therapy of cancer by superaparamagnetic hyperthermia. In addition, the very small size of magnetic nanoparticles (only a few nm) will lead to two major benefits in cancer therapy via superparamagnetic hyperthermia, namely: (i) the possibility of intracellular therapy which is much more effective due to the ability to destroy tumor cells from within and (ii) the reduced cell toxicity.
Funder
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献