A Machine Learning Method Based on 3D Local Surface Representation for Recognizing the Inscriptions on Ancient Stele

Author:

Murtala SheriffORCID,Choi Ye-ChanORCID,Choi Kang-SunORCID

Abstract

It is challenging to extract reliefs from ancient steles due to their rough surfaces, which contain relief-like noise such as dents and scratches. In this paper, we propose a method to segment relief region from 3D scanned ancient stele by exploiting local surface characteristics. For each surface point, four points that are apart from the reference point along the direction of the principal curvatures of the point are identified. The spin images of the reference point and the four relative points are concatenated to provide additional local surface information of the reference point. A random forest model is trained with the local surface features and, thereafter, used to classify 3D surface point as relief or non-relief. To effectively distinguish relief from the degraded surface region containing relief-like noise, the model is trained using three-class labels consisting of relief, background, and degraded surface region. The initial three-class result obtained from the model is refined using the k-nearest neighbors algorithm, and, finally, the degraded region is re-labeled to background region. Experimental results show that the proposed method performed better than the state-of-the-art, SVM-based method with a margin of 0.68%, 3.53%, 2.25%, and 2.36%, in accuracy, precision, F1 score, and SIRI, respectively. When compared with the height- and curvature-based methods, the proposed method outperforms these existing methods with accuracy, precision, F1 score, and SIRI gains of over 4%, 20%, 11%, and 12%, respectively.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Cast in Stone: Monuments, Geography, and Nationalism

2. Damage diagnosis at stone monuments-weathering forms, damage categories and damage indices;Fitzner;Acta Univ. Carol. Geol.,2001

3. Physical weathering of stones

4. WikipediaHttps://en.wikipedia.org/wiki/Stone-rubbing

5. Digital image enhancement for recording rupestrian engravings: applications to an alpine rockshelter

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3