Fatigue Design of Steel Bridge Deck Asphalt Pavement Based on Nonlinear Damage Accumulation Theory

Author:

Xu Xunqian,Li Yu,Huang Wei,Chen Dakai,Zhang Chen,Shi Wenkang

Abstract

Based on the nonlinear damage theory, this paper aims to explore the fatigue performance of steel bridge deck asphalt pavement under multistage fatigue load. Manson–Halford cumulative damage model and the modified model were introduced to describe loading sequence effects, and interactions between multiple loads were represented in stress ratio. The fatigue life prediction method of steel bridge deck asphalt pavement was put forward, considering loading sequence effects and load interactions. The fatigue design of steel bridge deck asphalt pavement was investigated with the fatigue life prediction model. The effects of different load levels and loading sequence on the fatigue design parameters stress ratio of steel bridge deck asphalt pavement were studied. The design results were compared with experimental results, and the prediction results were based on traditional Miner’s theory. The analysis results showed that the fatigue life prediction method based on the nonlinear cumulative damage theory can effectively design and analyze the fatigue characteristics of asphalt pavement of steel bridge deck with high accuracy and reliability. The fatigue life prediction model of steel bridge deck asphalt pavement can well reflect loading sequence effects and load interactions. In addition, the design model has relatively few parameters; therefore, it can be applied to practical engineering design.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3