On a Vector towards a Novel Hearing Aid Feature: What Can We Learn from Modern Family, Voice Classification and Deep Learning Algorithms

Author:

Hodgetts William,Song Qi,Xiang Xinyue,Cummine Jacqueline

Abstract

(1) Background: The application of machine learning techniques in the speech recognition literature has become a large field of study. Here, we aim to (1) expand the available evidence for the use of machine learning techniques for voice classification and (2) discuss the implications of such approaches towards the development of novel hearing aid features (i.e., voice familiarity detection). To do this, we built and tested a Convolutional Neural Network (CNN) Model for the identification and classification of a series of voices, namely the 10 cast members of the popular television show “Modern Family”. (2) Methods: Representative voice samples were selected from Season 1 of Modern Family (N = 300; 30 samples for each of the classes of the classification in this model, namely Phil, Claire, Hailey, Alex, Luke, Gloria, Jay, Manny, Mitch, Cameron). The audio samples were then cleaned and normalized. Feature extraction was then implemented and used as the input to train a basic CNN model and an advanced CNN model. (3) Results: Accuracy of voice classification for the basic model was 89%. Accuracy of the voice classification for the advanced model was 99%.; (4) Conclusions: Greater familiarity with a voice is known to be beneficial for speech recognition. If a hearing aid can eventually be programmed to recognize voices that are familiar or not, perhaps it can also apply familiar voice features to improve hearing performance. Here we discuss how such machine learning, when applied to voice recognition, is a potential technological solution in the coming years.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3