Deep-Feature-Based Approach to Marine Debris Classification

Author:

Marin IvanaORCID,Mladenović SašaORCID,Gotovac SvenORCID,Zaharija GoranORCID

Abstract

The global community has recognized an increasing amount of pollutants entering oceans and other water bodies as a severe environmental, economic, and social issue. In addition to prevention, one of the key measures in addressing marine pollution is the cleanup of debris already present in marine environments. Deployment of machine learning (ML) and deep learning (DL) techniques can automate marine waste removal, making the cleanup process more efficient. This study examines the performance of six well-known deep convolutional neural networks (CNNs), namely VGG19, InceptionV3, ResNet50, Inception-ResNetV2, DenseNet121, and MobileNetV2, utilized as feature extractors according to three different extraction schemes for the identification and classification of underwater marine debris. We compare the performance of a neural network (NN) classifier trained on top of deep CNN feature extractors when the feature extractor is (1) fixed; (2) fine-tuned on the given task; (3) fixed during the first phase of training and fine-tuned afterward. In general, fine-tuning resulted in better-performing models but is much more computationally expensive. The overall best NN performance showed the fine-tuned Inception-ResNetV2 feature extractor with an accuracy of 91.40% and F1-score 92.08%, followed by fine-tuned InceptionV3 extractor. Furthermore, we analyze conventional ML classifiers’ performance when trained on features extracted with deep CNNs. Finally, we show that replacing NN with a conventional ML classifier, such as support vector machine (SVM) or logistic regression (LR), can further enhance the classification performance on new data.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3