Abstract
Background: COVID assessment can be performed using the recently developed individual risk score (prediction of severe respiratory failure in hospitalized patients with SARS-COV2 infection, PREDI-CO score) based on High Resolution Computed Tomography. In this study, we evaluated the possibility of automatizing this estimation using semi-supervised AI-based Radiomics, leveraging the possibility of performing non-supervised segmentation of ground-glass areas. Methods: We collected 92 from patients treated in the IRCCS Sant’Orsola-Malpighi Policlinic and public databases; each lung was segmented using a pre-trained AI method; ground-glass opacity was identified using a novel, non-supervised approach; radiomic measurements were collected and used to predict clinically relevant scores, with particular focus on mortality and the PREDI-CO score. We compared the prediction obtained through different machine learning approaches. Results: All the methods obtained a well-balanced accuracy (70%) on the PREDI-CO score but did not obtain satisfying results on other clinical characteristics due to unbalance between the classes. Conclusions: Semi-supervised segmentation, implemented using a combination of non-supervised segmentation and feature extraction, seems to be a viable approach for patient stratification and could be leveraged to train more complex models. This would be useful in a high-demand situation similar to the current pandemic to support gold-standard segmentation for AI training.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献