Author:
Zhou Jian,Li Jing,Liu Guoqiang,Yang Tao,Zhao Yongli
Abstract
Increasing the content of reclaimed asphalt pavement material (RAP) in hot-mix recycled asphalt mixture (RHMA) with a satisfactory performance has been a hot topic in recent years. In this study, the performances of Trinidad lake asphalt (TLA), virgin asphalt binder, and aged asphalt binder were first compared, and then the modification mechanism of TLA on virgin asphalt and aged asphalt was explored. Furthermore, the RHMA was designed in accordance with the French norm NF P 98-140 containing 50% and 100% RAP, and their high-temperature stability, low-temperature cracking resistance, and fatigue performances were tested to be compared with the conventional dense gradation AC-20 asphalt mixture. The results show that the addition of TLA changes the component proportion of virgin asphalt binder, but no new functional groups are produced. The hard asphalt binder modified by TLA has a better rutting resistance, while the fatigue and cracking resistance is lower, compared to both aged and virgin asphalt. The high-modulus design concept of RHMA is a promising way to increase the RAP content in RHMA with acceptable performance. Generally, the RHMA with 50% RAP has similar properties to AC-20. And, when the RAP content reaches 100%, the high- and low-temperature performance and anti-fatigue performance of RHMA are better than AC-20 mixture. Thus, recycling aged asphalt using hard asphalt binder for hot-mixing recycled asphalt mixture to increase the RAP content is feasible.
Funder
National Natural Science Foundation of China
Graduate Research and Innovation Projects of Jiangsu Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献