How Will Rwandan Land Use/Land Cover Change under High Population Pressure and Changing Climate?

Author:

Li ChaodongORCID,Yang Mingyi,Li Zhanbin,Wang Baiqun

Abstract

In recent decades, population growth and economic development have greatly influenced the pattern of land use/land cover (LULC) in Rwanda. Nevertheless, LULC patterns and their underlying change mechanisms under future climate conditions are not well known. Therefore, it is particularly important to explore the direction of LULC transfer in the study area, identify the factors driving the transfer of different types of LULC and their changes, and simulate future LULC patterns under future climate conditions. Based on LULC analyses of Rwanda in 1990, 2000, 2010, and 2015, the LULC pattern of Rwanda in the next 30 years was simulated using an LULC transition matrix, random forest sampling, the Markov chain model, and the PLUS model. The results showed that LULC change in the study area primarily comprised a decrease in forest area and expansion of cropland area, accompanied by a small increase in grassland area and an annual increase in urban land area. Prior to 2000, the LULC in Rwanda was mainly converted from forest and grassland to cropland, with the ratio being 0.72:0.28. After 2010, the LULC was mainly converted from forest to grassland and cropland, with the ratio being 0.83:0.17. Changes in forests, grasslands, and cropland are driven by multiple factors, whereas changes in wetlands, water, urban land, and unused land are more likely to be driven by a single factor. The existing trend of LULC change will continue for the next 30 years, and the future LULC pattern will exhibit a trend in which cropland area will increase in the west and grassland area will decrease, whereas grassland area will increase in the east and cropland area will decrease.

Funder

International Cooperation and Exchange Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3