Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications

Author:

Rauber DanielORCID,Hofmann AndreasORCID,Philippi FrederikORCID,Kay Christopher W. M.ORCID,Zinkevich Tatiana,Hanemann ThomasORCID,Hempelmann Rolf

Abstract

Ionic liquids are attractive and safe electrolytes for diverse electrochemical applications such as advanced rechargeable batteries with high energy densities. Their properties that are beneficial for energy storage and conversion include negligible vapor-pressure, intrinsic conductivity as well as high stability. To explore the suitability of a series of ionic liquids with small ammonium cations for potential battery applications, we investigated their thermal and transport properties. We studied the influence of the symmetrical imide-type anions bis(trifluoromethanesulfonyl)imide ([TFSI]−) and bis(fluorosulfonyl)imide ([FSI]−), side chain length and functionalization, as well as lithium salt content on the properties of the electrolytes. Many of the samples are liquid at ambient temperature, but their solidification temperatures show disparate behavior. The transport properties showed clear trends: the dynamics are accelerated for samples with the [FSI]− anion, shorter side chains, ether functionalization and lower amounts of lithium salts. Detailed insight was obtained from the diffusion coefficients of the different ions in the electrolytes, which revealed the formation of aggregates of lithium cations coordinated by anions. The ionic liquid electrolytes exhibit sufficient stability in NMC/Li half-cells at elevated temperatures with small current rates without the need of additional liquid electrolytes, although Li-plating was observed. Electrolytes containing [TFSI]− anions showed superior stability compared to those with [FSI]− anions in battery tests.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3