Author:
Chen Yuqiang,Xiong Chuang,Liu Wenhui,Pan Suping,Song Yufeng,Liu Yang,Zhu Biwu
Abstract
The influences of cold rolling and subsequent heat treatment on the microstructure evolution of 2524 alloy were investigated using an orientation distribution function (ODF) and electron back-scattered diffraction (EBSD). A preparation method of 2524-T3 aluminum alloy with a strong Brass texture was developed, and its effect on the fatigue properties of the alloy was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that with the increase in cold rolling deformation from 0% to 80%, the volume fractions of Brass, copper, and S textures in the 2524-T3 alloy also increase, especially in the case of Brass and S textures. However, the volume fractions of cube and Goss textures are reduced significantly, especially for cube textures, which are decreased by 57.4%. Reducing coarse second-phase particles (CSPs) is conducive to the formation of a strong deformation texture during cold rolling. A 10% deformation at each rolling pass, followed by a step annealing, helps the preservation of a Brass texture even after solution treatment at 500 °C for 0.5 h, while a large cold deformation followed by high-temperature annealing helps the formation of a strong cube texture. The Brass texture can enhance the strength while decreasing the fatigue crack growth resistance of this alloy.
Funder
National Natural Science Foundation of China
the Science and Technology Planning Project of Hunan Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献