Texture Evolution and Control of 2524 Aluminum Alloy and Its Effect on Fatigue Crack Propagation Behavior

Author:

Chen Yuqiang,Xiong Chuang,Liu Wenhui,Pan Suping,Song Yufeng,Liu Yang,Zhu Biwu

Abstract

The influences of cold rolling and subsequent heat treatment on the microstructure evolution of 2524 alloy were investigated using an orientation distribution function (ODF) and electron back-scattered diffraction (EBSD). A preparation method of 2524-T3 aluminum alloy with a strong Brass texture was developed, and its effect on the fatigue properties of the alloy was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that with the increase in cold rolling deformation from 0% to 80%, the volume fractions of Brass, copper, and S textures in the 2524-T3 alloy also increase, especially in the case of Brass and S textures. However, the volume fractions of cube and Goss textures are reduced significantly, especially for cube textures, which are decreased by 57.4%. Reducing coarse second-phase particles (CSPs) is conducive to the formation of a strong deformation texture during cold rolling. A 10% deformation at each rolling pass, followed by a step annealing, helps the preservation of a Brass texture even after solution treatment at 500 °C for 0.5 h, while a large cold deformation followed by high-temperature annealing helps the formation of a strong cube texture. The Brass texture can enhance the strength while decreasing the fatigue crack growth resistance of this alloy.

Funder

National Natural Science Foundation of China

the Science and Technology Planning Project of Hunan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3