Abstract
The polyol method has been used to synthesize CoNiFe and CoNiZn alloy nanoparticles (NPs). The magnetic characteristics of the products have been measured by vibration sample magnetometry (VSM) analysis. At the same time, the microstructure and morphology were inspected by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Magnetic measurement of samples by the VSM indicated that samples have soft ferromagnetic behavior. Spherical-shaped grains for samples were confirmed by the SEM. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) assays were used to determine the cytotoxic effects of the synthesized NPs. Cytotoxic evaluations showed that treatment with 25 to 400 µg/mL of CoNiZn and CoNiFe NPs exerted a significant time- and concentration-dependent toxicity in MCF7 and HUVEC cells and markedly enhanced the LDH leakage after 48 h of exposure (p < 0.05 compared with untreated cells). Furthermore, NPs with concentrations higher than 12.5 µg/mL induced evident morphological changes in the studied cell lines. Treatment with 12.5 µg/mL of CoNiZn and CoNiFe NPs was safe and did not affect normal human cell survival. The results of in vitro cytotoxicity assessments show promise in supporting the suitability of the synthesized NPs to build high-performance theranostic nanoplatforms for simultaneous cancer imaging and therapy without affecting normal human cells.
Funder
Zahedan University of Medical Sciences
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献