Biovalorization of Lignocellulosic Materials for Xylitol Production by the Yeast Komagataella pastoris

Author:

Araújo DianaORCID,Costa Tatiana,Freitas FilomenaORCID

Abstract

The main goal of this study was to screen different lignocellulosic materials for their ability to support the cell growth of the yeast Komagataella pastoris and the production of xylitol. Several lignocellulosic materials, namely banana peels, brewer’s spent grains (BSGs), corncobs, grape pomace, grape stalks, and sawdust, were subjected to dilute acid hydrolysis to obtain sugar rich solutions that were tested as feedstocks for the cultivation of K. pastoris. Although the culture was able to grow in all the tested hydrolysates, a higher biomass concentration was obtained for banana peels (15.18 ± 0.33 g/L) and grape stalks (14.58 ± 0.19 g/L), while the highest xylitol production (1.51 ± 0.07 g/L) was reached for the BSG hydrolysate with a xylitol yield of 0.66 ± 0.39 g/g. Cell growth and xylitol production from BSG were improved by detoxifying the hydrolysate using activated charcoal, resulting in a fourfold increase of the biomass production, while xylitol production was improved to 3.97 ± 0.10 g/L. Moreover, concomitant with arabinose consumption, arabitol synthesis was noticed, reaching a maximum concentration of 0.82 ± 0.05 g/L with a yield on arabinose of 0.60 ± 0.11 g/g. These results demonstrate the feasibility of using lignocellulosic waste, especially BSG, as feedstock for the cultivation of K. pastoris and the coproduction of xylitol and arabitol. Additionally, it demonstrates the use of K. pastoris as a suitable microorganism to integrate a zero-waste biorefinery, transforming lignocellulosic waste into two high-value specialty chemicals with high market demand.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3