A Digital Twins Machine Learning Model for Forecasting Disease Progression in Stroke Patients

Author:

Allen AngierORCID,Siefkas Anna,Pellegrini EmilyORCID,Burdick Hoyt,Barnes Gina,Calvert Jacob,Mao QingqingORCID,Das Ritankar

Abstract

Background: Machine learning methods have been developed to predict the likelihood of a given event or classify patients into two or more diagnostic categories. Digital twin models, which forecast entire trajectories of patient health data, have potential applications in clinical trials and patient management. Methods: In this study, we apply a digital twin model based on a variational autoencoder to a population of patients who went on to experience an ischemic stroke. The digital twin’s ability to model patient clinical features was assessed with regard to its ability to forecast clinical measurement trajectories leading up to the onset of the acute medical event and beyond using International Classification of Diseases (ICD) codes for ischemic stroke and lab values as inputs. Results: The simulated patient trajectories were virtually indistinguishable from real patient data, with similar feature means, standard deviations, inter-feature correlations, and covariance structures on a withheld test set. A logistic regression adversary model was unable to distinguish between the real and simulated data area under the receiver operating characteristic (ROC) curve (AUCadversary = 0.51). Conclusion: Through accurate projection of patient trajectories, this model may help inform clinical decision making or provide virtual control arms for efficient clinical trials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observational studies as a tool for introducing innovative oncology approaches into clinical practice: A review;Consilium Medicum;2023-11-05

2. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials;Expert Opinion on Drug Discovery;2023-10-27

3. Digital twin for healthcare systems;Frontiers in Digital Health;2023-09-07

4. TWIN: Personalized Clinical Trial Digital Twin Generation;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

5. Computational medicine: Grand challenges and opportunities for revolutionizing personalized healthcare;Frontiers in Medical Engineering;2023-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3