Abstract
The advent of Question Answering Systems (QASs) has been envisaged as a promising solution and an efficient approach for retrieving significant information over the Internet. A considerable amount of research work has focused on open domain QASs based on deep learning techniques due to the availability of data sources. However, the medical domain receives less attention due to the shortage of medical datasets. Although Electronic Health Records (EHRs) are empowering the field of Medical Question-Answering (MQA) by providing medical information to answer user questions, the gap is still large in the medical domain, especially for textual-based sources. Therefore, in this study, the medical textual question-answering systems based on deep learning approaches were reviewed, and recent architectures of MQA systems were thoroughly explored. Furthermore, an in-depth analysis of deep learning approaches used in different MQA system tasks was provided. Finally, the different critical challenges posed by MQA systems were highlighted, and recommendations to effectively address them in forthcoming MQA systems were given out.
Funder
the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献