Abstract
In the present study, aprepitant (APT) was selected to find its suitable crystal habit, which can improve its existing poor dissolution and manufacturing processability. Solvents were screened out for solubility analysis of APT and further crystal habit modification. Solid-state characterization studies like powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier infrared spectroscopy (FTIR) distinguished that tabular crystal habit was generated from acetone (APT-AC) and long tabular crystal habit was generated from ethyl acetate (APT-EA). Kawakita analysis and powder flow property studies showed that APT-EA is cohesive, has poor flow property and low bulk density compared to APT-AC (p < 0.05). Heckel plots reflected that APT-EA shows higher fragmentation and particle rearrangement during the initial stages as indicated by the higher intercept values. Higher slopes in APT-EA and APT-AC confirmed better plasticity but lower yield pressure in APT-AC proved good plastic deformation compared to APT-EA (p < 0.05). The dissolution profile of the APT-EA was found to be better than that of APT-AC. Overall, it can be concluded that APT-AC crystal habit has a better flow rate, tensile strength, and plasticity whereas APT-EA has better dissolution.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献