Development of a Fuzzy Logic Controller for Small-Scale Solar Organic Rankine Cycle Cogeneration Plants

Author:

Cioccolanti LucaORCID,De Grandis Simone,Tascioni Roberto,Pirro Matteo,Freddi AlessandroORCID

Abstract

Solar energy is widely recognized as one of the most attractive renewable energy sources to support the transition toward a decarbonized society. Use of low- and medium-temperature concentrated solar technologies makes decentralized power production of combined heating and power (CHP) an alternative to conventional energy conversion systems. However, because of the changes in solar radiation and the inertia of the different subsystems, the operation control of concentrated solar power (CSP) plants is fundamental to increasing their overall conversion efficiency and improving reliability. Therefore, in this study, the operation control of a micro-scale CHP plant consisting of a linear Fresnel reflector solar field, an organic Rankine cycle unit, and a phase change material thermal energy storage tank, as designed and built under the EU-funded Innova Microsolar project by a consortium of universities and companies, is investigated. In particular, a fuzzy logic control is developed in MATLAB/Simulink by the authors in order to (i) initially recognize the type of user according to the related energy consumption profile by means of a neural network and (ii) optimize the thermal-load-following approach by introducing a set of fuzzy rules to switch among the different operation modes. Annual simulations are performed by combining the plant with different thermal load profiles. In general, the analysis shows that that the proposed fuzzy logic control increases the contribution of the TES unit in supplying the ORC unit, while reducing the number of switches between the different OMs. Furthermore, when connected with a residential user load profile, the overall electrical and thermal energy production of the plant increases. Hence, the developed control logic proves to have good potential in increasing the energy efficiency of low- and medium-temperature concentrated solar ORC systems when integrated into the built environment.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3