Early Performance Prediction in Bioinformatics Systems Using Palladio Component Modeling

Author:

Dorgham Doaa M. TalaatORCID,Belal Nahla A.ORCID,Abdelmoez Walid

Abstract

Bioinformatics is a branch of science that uses computers, algorithms, and databases to solve biological problems. To achieve more accurate results, researchers need to use large and complex datasets. Sequence alignment is a well-known field of bioinformatics that allows the comparison of different genomic sequences. The comparative genomics field allows the comparison of different genomic sequences, leading to benefits in areas such as evolutionary biology, agriculture, and human health (e.g., mutation testing connects unknown genes to diseases). However, software engineering best practices, such as software performance engineering, are not taken into consideration in most bioinformatics tools and frameworks, which may lead to serious performance problems. Having an estimate of the software performance in the early phases of the Software Development Life Cycle (SDLC) is beneficial in making better decisions relating to the software design. Software performance engineering provides a reliable and observable method to build systems that can achieve their required performance goals. In this paper, we introduce the use of the Palladio Component Modeling (PCM) methodology to predict the performance of a sequence alignment system. Software performance engineering was not considered during the original system development. As a result of the performance analysis, an alternative design is proposed. Comparing the performance of the proposed design against the one already developed, a better response time is obtained. The response time of the usage scenario is reduced from 16 to 8.6 s. The study results show that using performance models at early stages in bioinformatics systems can help to achieve better software system performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Software performance engineering;Smith,2003

2. NCBIhttps://www.ncbi.nlm.nih.gov/books/NBK44939/

3. Comparative genomics;Xia,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3