Experimental & FEM Analysis of Orthodontic Mini-Implant Design on Primary Stability

Author:

Mešić ElmedinORCID,Muratović EnisORCID,Redžepagić-Vražalica LejlaORCID,Pervan NedimORCID,Muminović Adis J.ORCID,Delić MuamerORCID,Glušac MirzaORCID

Abstract

The main objective of this research is to establish a connection between orthodontic mini-implant design, pull-out force and primary stability by comparing two commercial mini-implants or temporary anchorage devices, Tomas®-pin and Perfect Anchor. Mini-implant geometric analysis and quantification of bone characteristics are performed, whereupon experimental in vitro pull-out test is conducted. With the use of the CATIA (Computer Aided Three-dimensional Interactive Application) CAD (Computer Aided Design)/CAM (Computer Aided Manufacturing)/CAE (Computer Aided Engineering) system, 3D (Three-dimensional) geometric models of mini-implants and bone segments are created. Afterwards, those same models are imported into Abaqus software, where finite element models are generated with a special focus on material properties, boundary conditions and interactions. FEM (Finite Element Method) analysis is used to simulate the pull-out test. Then, the results of the structural analysis are compared with the experimental results. The FEM analysis results contain information about maximum stresses on implant–bone system caused due to the pull-out force. It is determined that the core diameter of a screw thread and conicity are the main factors of the mini-implant design that have a direct impact on primary stability. Additionally, stresses generated on the Tomas®-pin model are lower than stresses on Perfect Anchor, even though Tomas®-pin endures greater pull-out forces, the implant system with implemented Tomas®-pin still represents a more stressed system due to the uniform distribution of stresses with bigger values.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3