Influence of Preparation Conditions on the Catalytic Performance of Mo/H-ZSM-5 for Methane Dehydroaromatization

Author:

Portilla Maria Teresa,Llopis Francisco J.,Moliner Manuel,Martinez CristinaORCID

Abstract

Methane, the main component of natural gas, is an interesting source of chemicals and clean liquid fuels, and a promising alternative raw material to oil. Among the possible direct routes for methane conversion, its aromatization under non-oxidative conditions has received increasing attention, despite the low conversions obtained due to thermodynamic limitations, because of its high selectivity to benzene. Mo/H-ZSM-5, the first bifunctional zeolite-catalyst proposed for this reaction, is still considered as one of the most adequate and has been widely studied. Although the mono- or bifunctional nature of the MDA mechanism is still under debate, it is generally accepted that the Mo species activate the C-H bond in methane, producing the intermediates. These will aromatize on the Brønsted acid sites of the zeolite, whose pore dimensions will provide the shape selectivity needed for converting methane into benzene. An additional role of the zeolite’s Brønsted acid sites is to promote the dispersion of the Mo oxide precursor. Here, we show the influence of the different preparation steps—metal incorporation, calcination and activation of the Mo/ZSM-5- on the metal dispersion and, therefore, on the activity and selectivity of the final catalyst. Metal dispersion is enhanced when the samples are calcined under dynamic conditions (DC) and activated in N2, and the benefits are larger when the metal has been incorporated by solid state reaction (SSR), as observed by FESEM-BSE and H2-TPR. This leads to catalysts with higher activity, increased aromatic selectivity and improved stability towards deactivation.

Funder

Ministerio de Ciencia e Innovación

Generalitat Valenciana

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3