Abstract
In this paper, considering the porosity defects of Additive Manufacturing (AM), a level set topology optimization method for AM with porosity constraints is proposed. The concept of topological sensitivity is used to formulate a global porosity constraint function in the proposed method, and a level set topology optimization model considering porosity defects is obtained. To improve the robustness of the algorithm, the topology optimization model is solved in two phases. At first, the classical level set method without the porosity constraint is used to initially optimize the structure. During this process, the hole nucleation method combining bi-directional evolutionary structural optimization (BESO) and the topological sensitivity is used. Secondly, the topology optimization considering the effects of porosity is implemented on the preliminary optimization results. After performing the two-step optimization, a robust structure that alleviates the harmful impact of porosity defects is obtained. Finally, the robustness and effectiveness of the proposed method are validated by several two-dimensional numerical examples.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献