A Novel Cascaded Modular Photovoltaic Energy Storage System for Partial Shading Conditions

Author:

Fan Yuanliang,Fang Luebin,Wu Han,Liu Bingqian,Huang Jianye,Lin Shuang,Wang Zhenhao,Wang YuORCID

Abstract

To satisfy the grid-connected voltage level, both photovoltaic modules and energy storage modules are connected in series. However, the multiple photovoltaic modules often fall into local maximum power point under partial shading conditions during practical operation, and the multiple energy storage modules may suffer from a reduction in the effective capacity caused by characteristic differences among modules. To solve this problem, a novel cascaded modular photovoltaic-energy storage system is proposed in this paper. In the proposed topology, the energy storage modules achieve maximum power point tracking of the corresponding distributed photovoltaic module, and the proposed energy optimization strategy based on particle swarm optimization can ensure the efficient constant active power transmission from a photovoltaic energy storage (PV/ES) system to the grid in a certain time period under capacity constraints. Compared with conventional photovoltaic systems, the proposed scheme can avoid hot spots or the hot strings phenomena for PV modules and the large current and voltage stresses for DC/DC converters. Furthermore, the proposed energy optimization strategy for the coordination of all ES modules can realize the independent MPPT of each PV module and the constant active power between the PV/ES system and the grid under inconsistency of the light intensity under partial shading conditions. A hardware-in-loop photovoltaic-energy platform is established to verify the feasibility and effectiveness of the proposed topology and control strategy, and the proposed system achieves efficiency of about 97% under partial shading conditions, thus providing an effective and practical solution for power generation system.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3