Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions

Author:

Dubenko Anastasiia V.ORCID,Nikolenko Mykola V.,Aksenenko Eugene V.,Kostyniuk AndriiORCID,Likozar BlažORCID

Abstract

Rutile decomposition by sulfuric acid, including the formation of two salts, Ti(SO4)2/TiOSO4, is thermodynamically modelled. It is shown that TiO2 can spontaneously dissolve in H2SO4 solutions. However, titania is considered as an inert (ballast) phase component of titanium-containing raw materials due to the decelerated separate nature of such chemical transformations. It is concluded that the hampered related kinetics of dissolution can be attributed to the lability of Ti(IV) cations/the specific engineered features of the hierarchical crystalline structure. It is suggested that the breaking of Ti–O–Ti bonds without additional mechanical strains in crystal lattice geometry becomes more advantageous when smaller negative anions/fluoride ions can be used. The analysis of sulfate-fluoride extraction leaching of titanium confirmed that a decrease in the Gibbs energy in the presence of F occurs. It is indicated by kinetic research studies that the addition of corrosive sodium reagent (NaF) reduces the activation by 45 kJ/mol, which results in intensification. A mechanism is proposed for the interactions involving the Ti–O–Ti cleavage on the surface/the H2SO4-induced Ti dioxide degradation on the sites of defects. Moreover, F acts as a homogeneous/heterogeneous bifunctional catalyst.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3