Macrofungal Diversity and Distribution Patterns in the Primary Forests of the Shaluli Mountains

Author:

Han Xixi12,Liu Dongmei3,Zhang Mingzhe14,He Maoqiang1ORCID,Li Jiaxin14ORCID,Zhu Xinyu12,Wang Meiqi14,Thongklang Naritsada2ORCID,Zhao Ruilin14ORCID,Cao Bin14ORCID

Affiliation:

1. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

2. Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand

3. Institue of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

4. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The Shaluli Mountains are located in the southeastern part of the Tibetan Plateau at an elevation of 2500–5000 m. They are characterized by a typical vertical distribution of climate and vegetation and are considered a global biodiversity hotspot. We selected ten vegetation types at different elevation gradients representing distinct forests in the Shaluli Mountains to assess the macrofungal diversity, including subalpine shrub, Pinus spp., Populus spp., Pinus spp. and Quercus spp., Quercus spp., Abies spp., Picea spp. and Abies spp., Picea spp., Juniperus spp., and alpine meadow. In total, 1654 macrofungal specimens were collected. All specimens were distinguished by morphology and DNA barcoding, resulting in the identification of 766 species belonging to 177 genera in two phyla, eight classes, 22 orders, and 72 families. Macrofungal species composition varied widely among vegetation types, but ectomycorrhizal fungi were predominant. In this study, the analysis of observed species richness, the Chao1 diversity index, the invsimpson diversity index, and the Shannon diversity index revealed that the vegetation types with higher macrofungal alpha diversity in the Shaluli Mountains were composed of Abies, Picea, and Quercus. The vegetation types with lower macrofungal alpha diversity were subalpine shrub, Pinus spp., Juniperus spp., and alpine meadow. The results of curve-fitting regression analysis showed that macrofungal diversity in the Shaluli Mountains was closely related to elevation, with a trend of increasing and then decreasing with rising elevation. This distribution of diversity is consistent with the hump-shaped pattern. Constrained principal coordinate analysis based on Bray–Curtis distances indicated that macrofungal community composition was similar among vegetation types at similar elevations, while vegetation types with large differences in elevation differed significantly in macrofungal community composition. This suggests that large changes in elevation increase macrofungal community turnover. This study is the first investigation of the distribution pattern of macrofungal diversity under different vegetation types in high-altitude areas, providing a scientific basis for the conservation of macrofungal resources.

Funder

National Natural Science Foundation of China

Projects of Science and Technology Programs of Tibet

Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3