Physiological Properties of Three Pelagic Fungi Isolated from the Atlantic Ocean

Author:

Breyer Eva1,Espada-Hinojosa Salvador1,Reitbauer Magdalena1,Karunarathna Samantha2ORCID,Baltar Federico1ORCID

Affiliation:

1. Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria

2. Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China

Abstract

Oceanic fungi are widely understudied compared to their terrestrial counterparts. However, they have been shown to be important degraders of organic matter in the global pelagic oceans. By examining the physiological characteristics of fungi isolated from the pelagic waters of the ocean it is possible to infer specific functions of each species in the biogeochemical processes that occur in the marine ecosystem. In this study, we isolated three pelagic fungi from different stations and depths across a transect in the Atlantic Ocean. We identified two yeasts [(Scheffersomyces spartinae (Debaryomycetaceae, Saccharomycetes, Ascomycota) and Rhodotorula sphaerocarpa (Sporidiobolaceae, Microbotryomycetes, Basidiomycota)], and the hyphae-morphotype fungus Sarocladium kiliense (Hypocreales, Sordariomycetes, Ascomycota), and conducted physiological experiments to investigate their preferred carbon uptake as well as their growth patterns under different environmental conditions. Despite their taxonomic and morphological differences, all species exhibited a high tolerance towards a wide range of salinities (0–40 g/L) and temperatures (5–35 °C). Furthermore, a shared metabolic preference for oxidizing amino acids was found among all fungal isolates. Collectively, this study provides relevant information on the physiological properties of oceanic pelagic fungi, revealing a high tolerance towards salinity and temperature changes, ultimately contributing to understanding their ecology and distribution in the oceanic water column.

Funder

the Austrian Science Fund (FWF) projects OCEANIDES

ENIGMA

EXEBIO

OCEANBIOPLAST

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3