RNAPII Degradation Factor Def1 Is Required for Development, Stress Response, and Full Virulence of Magnaporthe oryzae

Author:

Zhang Xinrong12,Li Dong1,Zhu Jun2,Zheng Jing2,Li Hongye2,He Qixuan1,Peng Jun3,Chen Shen4,Chen Xiao-Lin2ORCID,Wang Weixiang1

Affiliation:

1. Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China

2. State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

3. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

4. Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

Abstract

The RNA polymerase II degradation factor Degradation Factor 1 (Def1) is important for DNA damage repair and plays various roles in eukaryotes; however, the biological role in plant pathogenic fungi is still unknown. In this study, we investigated the role of Def1 during the development and infection of the rice blast fungus Magnaporthe oryzae. The deletion mutant of Def1 displayed slower mycelial growth, less conidial production, and abnormal conidial morphology. The appressoria of Δdef1 was impaired in the penetration into host cells, mainly due to blocking in the utilization of conidial storages, such as glycogen and lipid droplets. The invasive growth of the Δdef1 mutant was also retarded and accompanied with the accumulation of reactive oxygen species (ROS) inside the host cells. Furthermore, compared with the wild type, Δdef1 was more sensitive to multiple stresses, such as oxidative stress, high osmotic pressure, and alkaline/acidic pH. Interestingly, we found that Def1 was modified by O-GlcNAcylation at Ser232, which was required for the stability of Def1 and its function in pathogenicity. Taken together, the O-GlcNAc modified Def1 is required for hyphae growth, conidiation, pathogenicity, and stress response in M. oryzae. This study reveals a novel regulatory mechanism of O-GlcNAc-mediated Def1 in plant pathogenic fungi.

Funder

National Natural Science Foundation of China

Special Scientific Research Project of Beijing Agriculture University

Research Fund of State Key Laboratory for Biology of Plant Diseases and Insect Pests

Opening Project of Beijing Key Laboratory of New Technology in Agricultural Application

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3