Aspergillus fumigatus Supernatants Disrupt Bronchial Epithelial Monolayers: Potential Role for Enhanced Invasion in Cystic Fibrosis

Author:

Dunne Katie1,Reece Emma1ORCID,McClean Siobhán2ORCID,Doyle Sean3,Rogers Thomas R.1,Murphy Philip1,Renwick Julie1ORCID

Affiliation:

1. Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland

2. School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland

3. Department of Biology, Maynooth University, Maynooth, W23 F2K8 Kildare, Ireland

Abstract

Aspergillus fumigatus is the most commonly isolated fungus in chronic lung diseases, with a prevalence of up to 60% in cystic fibrosis patients. Despite this, the impact of A. fumigatus colonisation on lung epithelia has not been thoroughly explored. We investigated the influence of A. fumigatus supernatants and the secondary metabolite, gliotoxin, on human bronchial epithelial cells (HBE) and CF bronchial epithelial (CFBE) cells. CFBE (F508del CFBE41o−) and HBE (16HBE14o−) trans-epithelial electrical resistance (TEER) was measured following exposure to A. fumigatus reference and clinical isolates, a gliotoxin-deficient mutant (ΔgliG) and pure gliotoxin. The impact on tight junction (TJ) proteins, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were determined by western blot analysis and confocal microscopy. A. fumigatus conidia and supernatants caused significant disruption to CFBE and HBE TJs within 24 h. Supernatants from later cultures (72 h) caused the greatest disruption while ΔgliG mutant supernatants caused no disruption to TJ integrity. The ZO-1 and JAM-A distribution in epithelial monolayers were altered by A. fumigatus supernatants but not by ΔgliG supernatants, suggesting that gliotoxin is involved in this process. The fact that ΔgliG conidia were still capable of disrupting epithelial monolayers indicates that direct cell–cell contact also plays a role, independently of gliotoxin production. Gliotoxin is capable of disrupting TJ integrity which has the potential to contribute to airway damage, and enhance microbial invasion and sensitisation in CF.

Funder

Trinity College Dublin School of Medicine

National Children’s Hospital, Tallaght University Hospital, Dublin, Ireland

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3